Copied to
clipboard

G = C13×C22⋊C4order 208 = 24·13

Direct product of C13 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C13×C22⋊C4, C22⋊C52, C23.C26, C26.12D4, (C2×C26)⋊3C4, (C2×C52)⋊2C2, (C2×C4)⋊1C26, C2.1(C2×C52), C2.1(D4×C13), C26.17(C2×C4), C22.2(C2×C26), (C22×C26).1C2, (C2×C26).13C22, SmallGroup(208,21)

Series: Derived Chief Lower central Upper central

C1C2 — C13×C22⋊C4
C1C2C22C2×C26C2×C52 — C13×C22⋊C4
C1C2 — C13×C22⋊C4
C1C2×C26 — C13×C22⋊C4

Generators and relations for C13×C22⋊C4
 G = < a,b,c,d | a13=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C4
2C22
2C4
2C22
2C26
2C26
2C52
2C52
2C2×C26
2C2×C26

Smallest permutation representation of C13×C22⋊C4
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 65)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 61)(11 62)(12 63)(13 64)(14 91)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(66 102)(67 103)(68 104)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 99)(77 100)(78 101)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 102)(15 103)(16 104)(17 92)(18 93)(19 94)(20 95)(21 96)(22 97)(23 98)(24 99)(25 100)(26 101)(40 57)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 65)(49 53)(50 54)(51 55)(52 56)(66 91)(67 79)(68 80)(69 81)(70 82)(71 83)(72 84)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)
(1 67 65 15)(2 68 53 16)(3 69 54 17)(4 70 55 18)(5 71 56 19)(6 72 57 20)(7 73 58 21)(8 74 59 22)(9 75 60 23)(10 76 61 24)(11 77 62 25)(12 78 63 26)(13 66 64 14)(27 84 40 95)(28 85 41 96)(29 86 42 97)(30 87 43 98)(31 88 44 99)(32 89 45 100)(33 90 46 101)(34 91 47 102)(35 79 48 103)(36 80 49 104)(37 81 50 92)(38 82 51 93)(39 83 52 94)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,65)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,91)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(66,102)(67,103)(68,104)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101), (1,35)(2,36)(3,37)(4,38)(5,39)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,102)(15,103)(16,104)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,53)(50,54)(51,55)(52,56)(66,91)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90), (1,67,65,15)(2,68,53,16)(3,69,54,17)(4,70,55,18)(5,71,56,19)(6,72,57,20)(7,73,58,21)(8,74,59,22)(9,75,60,23)(10,76,61,24)(11,77,62,25)(12,78,63,26)(13,66,64,14)(27,84,40,95)(28,85,41,96)(29,86,42,97)(30,87,43,98)(31,88,44,99)(32,89,45,100)(33,90,46,101)(34,91,47,102)(35,79,48,103)(36,80,49,104)(37,81,50,92)(38,82,51,93)(39,83,52,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,65)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,91)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(66,102)(67,103)(68,104)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101), (1,35)(2,36)(3,37)(4,38)(5,39)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,102)(15,103)(16,104)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,53)(50,54)(51,55)(52,56)(66,91)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90), (1,67,65,15)(2,68,53,16)(3,69,54,17)(4,70,55,18)(5,71,56,19)(6,72,57,20)(7,73,58,21)(8,74,59,22)(9,75,60,23)(10,76,61,24)(11,77,62,25)(12,78,63,26)(13,66,64,14)(27,84,40,95)(28,85,41,96)(29,86,42,97)(30,87,43,98)(31,88,44,99)(32,89,45,100)(33,90,46,101)(34,91,47,102)(35,79,48,103)(36,80,49,104)(37,81,50,92)(38,82,51,93)(39,83,52,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,65),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,61),(11,62),(12,63),(13,64),(14,91),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(66,102),(67,103),(68,104),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,99),(77,100),(78,101)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,102),(15,103),(16,104),(17,92),(18,93),(19,94),(20,95),(21,96),(22,97),(23,98),(24,99),(25,100),(26,101),(40,57),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,65),(49,53),(50,54),(51,55),(52,56),(66,91),(67,79),(68,80),(69,81),(70,82),(71,83),(72,84),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90)], [(1,67,65,15),(2,68,53,16),(3,69,54,17),(4,70,55,18),(5,71,56,19),(6,72,57,20),(7,73,58,21),(8,74,59,22),(9,75,60,23),(10,76,61,24),(11,77,62,25),(12,78,63,26),(13,66,64,14),(27,84,40,95),(28,85,41,96),(29,86,42,97),(30,87,43,98),(31,88,44,99),(32,89,45,100),(33,90,46,101),(34,91,47,102),(35,79,48,103),(36,80,49,104),(37,81,50,92),(38,82,51,93),(39,83,52,94)]])

C13×C22⋊C4 is a maximal subgroup of
C22.2D52  C23.11D26  C22⋊Dic26  C23.D26  Dic134D4  C22⋊D52  D26.12D4  D26⋊D4  C23.6D26  C22.D52  D4×C52

130 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D13A···13L26A···26AJ26AK···26BH52A···52AV
order122222444413···1326···2626···2652···52
size11112222221···11···12···22···2

130 irreducible representations

dim1111111122
type++++
imageC1C2C2C4C13C26C26C52D4D4×C13
kernelC13×C22⋊C4C2×C52C22×C26C2×C26C22⋊C4C2×C4C23C22C26C2
# reps121412241248224

Matrix representation of C13×C22⋊C4 in GL3(𝔽53) generated by

100
0240
0024
,
100
0520
0111
,
100
0520
0052
,
3000
04251
0811
G:=sub<GL(3,GF(53))| [1,0,0,0,24,0,0,0,24],[1,0,0,0,52,11,0,0,1],[1,0,0,0,52,0,0,0,52],[30,0,0,0,42,8,0,51,11] >;

C13×C22⋊C4 in GAP, Magma, Sage, TeX

C_{13}\times C_2^2\rtimes C_4
% in TeX

G:=Group("C13xC2^2:C4");
// GroupNames label

G:=SmallGroup(208,21);
// by ID

G=gap.SmallGroup(208,21);
# by ID

G:=PCGroup([5,-2,-2,-13,-2,-2,520,541]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C13×C22⋊C4 in TeX

׿
×
𝔽